Inferring Passenger Types from Commuter Eigentravel Matrices
Here, using an ensemble of machine learning models, a procedure is demonstrated that classifies passengers (Adult, Child/Student, and Senior Citizen) based on their three-month travel patterns. The method proceeds by constructing distinct commuter matrices, we refer to as eigentravel matrices, that capture a commuter's characteristic travel routine. Comparing various classification models, we show that the gradient boosting method gives the best prediction with 76% accuracy, 81% better than the minimum model accuracy (42%) computed using proportional chance criterion.
Feb 28, 2017